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Recently, Lisman proposed an attractive idea that a use-dependent change in the strength of transmis-
sion efficiency at a synapse, thought of as an elementary process of learning and memory in the brain, is
attributed to the switching of biochemical activity. He postulated two enzymes in a postsynaptic spine:
One undergoes autocatalytic activation; the other deactivates the active form of the former enzyme. He
showed that these enzymatic reactions yield two distinct thermal equilibrium limits and the total system
functions as a bistable switch. In the original Lisman model, these enzymatic reactions are considered to
be closed in each spine. In this paper, we generalize his model by taking solubilities of the enzymes into
account, and discuss what kind of interaction between the modification processes at neighboring
synapses formed on the same neuron is caused by cytosolic enzyme transportation between spines. Our
model is described by a nonlinear dynamical system whose structure we investigate in analytical and nu-
merical ways. Results show that this system can be multistable and exhibit spontaneous symmetry
breaking, which represents a competitive interaction between the modification processes. This interac-
tion leads to a phenomenon which has been dubbed “‘synapse selection:” The weight of only one of the
synapses, which is the strongest at an initial time, is selected and enhanced, and those of the others are
returned to their basal levels with time in ascending order of their initial strengths. In addition, a
difficulty associated with the original Lisman model, that the parameter range which allows the system
to function as a switch is relatively narrow and accordingly the switch mechanism is functionally unsta-
ble against small changes in parameters, is considerably improved in our generalized scheme by broaden-
ing the parameter range. In this broadened parameter range, the system works as a hybridized switch,
i.e., a switch with the function of synapse selection.
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1. INTRODUCTION

Processing of information in the brain is carried out by
signal transmissions in neural networks. A locus through
which signals are transferred from one neuron to the next
is called a synapse. It is a widely accepted idea that a
use-dependent change in the strength of transmission
efficiency at a synapse (synaptic weight) is an elementary
process of learning and memory [1].

Recently, Lisman [2] proposed a bistable molecular
switch as a possible model for such a synaptic-
modification process. He postulated two enzymes in a
postsynaptic spine: One undergoes activation of itself,
i.e., autocatalytic activation, and the active form of this
enzyme is responsible for synaptic enhancement; the oth-
er undergoes inactivation of the active form of the former
enzyme. In this paper, the former and the latter enzymes
will be referred to as an enhancer and an inactivator, re-
spectively. It was shown that autocatalytic activation of
the enhancer versus its inactivation can yield two distinct
thermal equilibrium states: In one state, a portion of the
enhancer in a spine is in the active form, and hence, the
synaptic weight is at an enhanced level, that is, the
molecular switch is “ON;” in the other state, all of the
enhancer in the spine is in the inactive form and, hence,
the synaptic weight is at its basal level, that is, the molec-
ular switch is “OFF.”

The enhancer in a spine is activated through either of
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the following two processes: (1) It is activated when a
signal is transferred from a presynaptic terminal to a
postsynaptic spine; (2) it is also activated through autoca-
talysis, as mentioned above. Suppose that all of the
enhancer in a spine is in the inactive form at an initial
time, namely, the molecular switch is OFF. Then, a signal
transmission takes place, and, as a result, a quantity of
the enhancer, proportional to the intensity of the signal,
is activated through process (1) as well as through pro-
cess (2). The signal transmission and resulting activation
of the enhancer through process (1) are transient. After
termination of them, nevertheless, autocatalytic activa-
tion of the enhancer [process (2)] still continues. There is
a threshold with respect to the concentration of the ac-
tive enhancer: If the intensity of the signal is strong
enough to raise the concentration of the active enhancer
above this threshold, then the molecular switch is turned
ON.

Lisman’s scheme was proposed as a hypothetical one;
it has not yet been verified by experiment. Indeed, molec-
ular mechanisms of synaptic-modification processes are
far from established [3]. In spite of that, a use-dependent
switching of biochemical activity responsible for synaptic
enhancement is one of the most plausible and also one of
the most attractive ideas that can theoretically explain a
molecular mechanism underlying a synaptic-modification
process. Therefore, one can employ Lisman’s model as a
molecular-mechanical basis for a further discussion of
general properties of a synaptic-modification process.
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Molecular mechanisms of synaptic-modification process-
es in the real brain may be much more complicated than
that proposed by Lisman, but his model probably
represents some essential features of them.

In a real neuron, a lot of synapses are formed on somas
and dendrites at high density [4]. In Lisman’s model,
nevertheless, the enzymatic reactions are considered to be
a closed system confined to each spine, and hence the
molecular switch at each spine functions independently
of those at others. This, however, is no longer the case if
the enzymes are soluble because soluble enzymes cannot
be confined to each spine permanently, but can leak out
from a spine, diffuse in cytosol, and enter another spine.
This eventually causes some kind of interaction between
the modification processes at neighboring synapses
formed on the same neuron. In other words, the molecu-
lar switch at each spine can no longer function indepen-
dently of those at others. In fact, there are numerous en-
zymes in cells, and some of them are soluble in cytosol
while others are insoluble—more precisely, associated to
membrane. Furthermore, there are also not a small num-
ber of enzymes that are soluble or membrane associated
in one form, but change their solubilities in another form.

In this paper we will generalize the original Lisman
model, taking solubilities of the enzymes into account,
and discuss how the modification processes at synapses
on a neuron interact with one another via cytosolic en-
zyme transportation between spines. Investigation of
such a cellular level of phenomenon is also significant
from the viewpoint of information processing in neural
networks; cooperativity or competition between synapses
caused by such an interaction must be implicated in pat-
tern encoding in neuronal connections, and thereby has
considerable influence upon network levels of informa-
tion processing. Our generalized scheme appears to be
described by a nonlinear dynamical system. We will
therefore investigate the dynamical behavior of our mod-
el by analyzing the mathematical structure of this non-
linear dynamical system. A preliminary report of this
work has been presented in [5].

II. CONSTRUCTION OF A MODEL

Lisman postulated typical enzymatic reactions in the
following scheme as a closed system in a postsynaptic
spine [2]:

kl k2

E"+Ek<—_>E‘E—>E‘+E* , (2.1)
-1
ks k,

I+E*=2IE*—>I+E . (2.2)

-3

Here, E and E* symbolize the enhancer in the active
form and that in the inactive form, respectively, and I
symbolizes the inactivator. The designations k,, k _,, k,,
k3, k_3, and k, are rate constants. Reaction (2.1) de-
scribes autocatalytic activation of the enhancer: A mole-
cule of the enhancer in the active form catalyzes the ac-
tivation of another molecule of the enhancer in the inac-
tive form. Reaction (2.2) describes inactivation of the
enhancer in the active form.
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Now we will generalize the original Lisman model, tak-
ing solubilities of the enzymes into account. In this paper
we assume that E is soluble, whereas the enhancer and
the inactivator in the other forms are membrane associat-
ed, that is, E is transported in cytosol by diffusion from
one spine to another, whereas the enhancer and the inac-
tivator in the other forms are confined to each spine. Of
course, one can consider other situations, but we do not
deal with them in this paper (see Sec. IV). A schematic
drawing of our model is given in Fig. 1.

Cytosolic transportation of E from the jth spine to the
ith one is represented by flow flux in the form

Ey vd ’ :
where Dy is the diffusion constant for E; V, S, and d are
the volume of each spine, the area of its mouth, and dis-
tance between two spines, respectively; [E]; is the con-
centration of E in the ith spine; and i,j =1, ..., N, with
N being the number of neighboring synapses interacting
with one another through cytosolic transportation of E.
For mathematical simplicity, V, S, and d are assumed to
be constant with i (and j).

Consider a group of neighboring spines formed on the
same neuronal-cell membrane and suppose that in each
spine all portions of the enhancer are in the inactive form
at an initial time. Then, signals are transferred through
synapses; each signal transmission occurs transiently and
synchronously to the others. In each spine, in turn, a
quantity of the enhancer, proportional to the intensity of
the signal, is then activated. It is therefore natural to
define the intensity of the signal transferred through the
ith synapse by the initial value of [E*];, the concentra-
tion of the active enhancer in the ith spine.

Let [E*];, [E*E];, [IE*];, and [I]; be the concentra-
tions of E*, E*E, IE*, and I in the ith spine, respective-
ly. After the termination of the signal transmissions, the
time evolution of the concentrations of the enzymes in
the ith spine is then described by the following equations

[6]:

d—[d?]i=‘k1[E]i[E‘],~+(k_l +2k,)[E*E)
~hs[E* LTk TE]; 2.4)
d[d}f]i =—k,[E}[E*);+k_,[E*E];
FhIET +2’E @.5)

presynaptic axon
terminal
synapse
postsynaptlc
membrane A A
1

spine E

FIG. 1. Schematic drawing of our model.
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d[E*E];
—a  KIELE*]i—(k_  +k)[E*E]; , (2.6)
d[1];

di =—k3[E*];[1); +(k _3+k [IE*], , 2.7
d[IE*);
=k (B L), — (k_y+kIE®), 2.8)

From (2.4)—-(2.8) one finds that

N

S ([E),+[E*],+2[E*E],+[IE*];)

i=1
and [I],+[IE*]; are held constant with time. Further
assuming that [I],+[IE*]; is also constant with i, one
can set

N

S ([E];+[E*);+2[E*E];,+[IE*];)=NCy (2.9)

i=1
and

[I],+[IE*];=C; (i=1,...,N), (2.10)

where Cp and C; are constants. Equations (2.9) and
(2.10) represent conservation laws for the enhancer and
the inactivator, respectively.

Lisman [2] postulated steady-state assumptions [7] for
the intermediary metabolites, E*E and IE*. These as-
sumptions greatly simplified the scheme, reducing the
number of variables and parameters without spoiling the
essential features of the model. Following Lisman, we
also postulate steady-state assumptions, as follows:

dLETE] =0, (2.11)

dt
dUET) 2.12)

dt
for i =1,...,N. On the basis of these assumptions, one

can substitute the following simplified equations for the
original ones:

d[E*]; _k,[EL[E*];  ViE*],

= , (2.13)
dt K, [E*),+K,
d[E*); k,[E];[E*); V,[E*); N
[ ]z - _ 2[ ]1[ ]1 + I[ ]1 + EJE ,
dt K, [E*];+K, =71
(2.14)
N —
> ([E];+[E*))=NCg , (2.15)
i=1
where Cp is defined by
N
5E=CE—%2(2[E‘E],-+[IE*],~) , (2.16)

i=1

which is a constant because [E*E]; and [IE*]; are held
constant with time [see (2.11) and (2.12)]. In (2.13) and
(2.14), K 4 and K, are Michaelis constants [7] for reac-
tions (2.1) and (2.2), respectively, and ¥, is maximal ve-
locity [7] for reaction (2.2); they are defined by

A k1 > .
k_3 +k4
I k, ’ (2.18)
V,=k,C; . (2.19)

For convenience for later discussion, we rewrite
(2.13)—-(2.15) into dimensionless forms as

dx; _ X Xi
s B iy (2.20)
dy; XY X; N

=— + —Ny. .
N
> (x;+y,)=Na, (2.22)

i=1

where x;, y;, a, B, v, and 8 are dimensionless variables
and parameters defined by

N (2.23)
1 VI L
ks
Vi :—IZ[EL , (2.24)
s=kyt, (2.25)
a=£EE : (2.26)
Vi
=ﬁKA , (2.27)
Vi
y=£2~K, , (2.28)
Vi
DgS
= k,Vd (2.29)

III. ANALYTICAL AND NUMERICAL
INVESTIGATION OF THE MODEL

Our problem is now described by the nonlinear dynam-
ical system (2.20)-(2.22). This system gives trajectories
of the state point P whose coordinate representation is
(x;,y;). The trajectories are constrained on the
(2N —1)-dimensional hyperplane (2.22) embedded in the
2N-dimensional phase space. The dynamical behavior of
our model can therefore be understood by investigating
the mathematical structure of these trajectories. To do
this, we will first determine stabilities of equilibrium
points of this system as functions of the parameters.

With the definitions

XiYi Xi
FF=———— | (3.1
! B x;+y
X;Y; X; N
G=—22 4 T 5|y —Ny |, (32
B x;+y j=1 /
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(2.20) and (2.21) become
%=F, (3.3)
y:i=G;, (3.4)

where a dot above a variable means d/ds. The coordi-
nates of equilibrium points of the system are given as pos-

itive roots of the algebraic equations
F,=G;=0, (3.5)

simultaneously with (2.22). Defining parameters u and v
by

p=B—ay, (3.6)
— N[2B—ay—2VB(B—ay)]
v= > , (3.7
Y
we can easily prove that (i) when
un<o, (3.8)

equilibrium points of the system are listed as P, and PL,.

(n=1,...,N); (ii) when
p>0 and v>1, (3.9)

equilibrium points of the system are listed as Py, P,

Na—ny>0, (Na—ny)*—4nN(B—ay)>0.

(3.15)

Stabilities of these equilibrium points will be deter-
mined using standard procedures in the linearized theory
[8], as below. Let (x/*¥,p{°?) be the coordinate represen-
tation of an equilibrium point, P®?, and consider small-
perturbed trajectories around it:

(3.16)
(3.17)

x;=x/ 4y, ,

Yi =yi(eq)+¢i ’

where X; and ¢, are small quantities. A given equilibri-
um point is (asymptotically) stable if y;—0 and 3; —0 as
s— oo. Substituting (3.16) and (3.17) into (3.3) and (3.4),
expanding their right-hand side terms into Taylor series
with respect to y; and ¢;, and neglecting quadratic and
higher-order terms, we obtain

. N 9F ¥ oF,
™ 2%y X=¢=ox,~+j§=‘,la—% X=¢=O¢,~, (3.18)
. N 3G, ¥ 36,

‘pi:jglaj X=¢=0Xf+j§15,zj‘ x=¢=o¢j . (3.19)

Introducing a 2n X2n matrix 4 and a 2n-dimensional
column vector £ defined by

(n=1,...,np), andPsn (n=1,...,ny); and (iii) when oF; JF;
p>0 and v<1, (3.10) P | % (3.20)
the system has only one equilibrium point, P,. In ﬁ EE’_
(i)-(Gii), Py, Py , and Pg are state points whose coordi- 3, | 9dY;
nates satisfy
Xi
x,=-=x3=0, y;=-'=yy=a, (3.11) £= v | (3.21)
X, =X =vp o, X T =X, =0, the set of (3.18) and (3.19) acquires the form
T [i,, , (3.12) £=4¢. 3.22)
En These linear differential equations can be solved by the
and hypothesis
Xj = X, TUs 5 X, T 00 =X, =0, §=&oexp(At) . (3.23)
Here A is a root of the algebraic equation
pi=-r=py=—>b (3.13)
' N gty ' |4 —n1l=0, (3.24)
. . . . here I is the 2n X 2n unit matrix.
respectively; n is an integer satisfying 1=n <N, w (eq) — .
(ky,...,ky) is an arbitrary permutation of (1,...,N), When P*%'=P,, Eq. (3.24) is evaluated as
and v; and vg are larger and smaller roots of the quad- _ N
n n N—1 B—ay | _,.
ratic equation MA+N3) At By =0; (3.25)
2_ — — =
n°—(Na—nyp+N(B—ay)=0. 314 when P("q’———PLn(v =v ) or P‘eq)———PS"(v =vs, ), (3.24)
respectively; n,, is the maximum of n’s that satisfy becomes
J
N-—n n—1
AMA+NSN 1 (4 —2 a2— |Ns+Z+ + o
(v+y)y B (v+y)? (w+y)?
X [+ |[No+2——2 _ |ats|——M_ |-, (3.26)
[ B (v+y) B (v+y)?
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Both (3.25) and (3.26) have a root A=0, which reflects the
conservation law (2.22). The mode corresponding to this
root represents translations vertical to the hyperplane
(2.22). If the real parts of all the other A’s are negative,
the given equilibrium point, which is on this hyperplane,
is stable against small perturbations horizontal to this hy-
perplane. If any one of them is positive, the equilibrium
point is unstable.

If u>0, then all the roots of (3.25) except A=0 are
negative; if u <0, then (3.25) has an n-multiple positive
root, —(B—ay)/By. Therefore, P, is stable if y >0, and
it is unstable if u <0.

Critical factors in (3.26), which are responsible for sta-
bilities of either Py or Py , are

M- N+ LU a4 DO
B (+y) (v+y)
and
v v nv Nv
a Ns_’-g_(v+y)2 ?—(v+y)2 '
|
(xl,xz,x3,...,xNvl,xN)=(va,0,0,...,O,O),(O,le,O,...

The system is therefore N multistable.
(ii) When u>0 and v> 1, the system has two kinds of
stable focuses, Py and Py . The system is therefore N +1

multistable.
(iii) When u>0 and v <1, the system has only one
stable focus, P, and hence the system is monostable.
Note also that all A’s that satisfy (3.25) or (3.26) are
real. From this and the above findings, one can expect
that limit cycles or chaotic behavior do not occur, and
the state point is always attracted to either P, or PL1 as

s— 0. To verify this expectation, we performed numeri-
cal simulations of the time evolution of the system under
each of the following conditions: (i) u <O0; (ii) ©>0 and
v>1; (ili) >0 and v < 1. In these simulations, we postu-
lated an idealized situation that x; +y;, which is propor-
tional to the total of active- and inactive-enhancer con-
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Consider, therefore, the following quadratic equations:

- (Ne+ Ly i N, (3.27)
B (v+y) (v+y)
At |No+L——2  a+s |-,
B (v+y)? B (v+y)?
(3.28)

Both of the roots of (3.27) are positive. They are also
roots of (3.26) except when n =1. When v =v , (3.28)

has two negative roots if u<O0 or if u>0 and v>1.
Therefore, P; is stable only when n =1. When v =vg ,

(3.28) has one positive and one negative root if u >0 and
v> 1. Therefore, Pg is unstable.

Results in the above discussion are summarized in
Table 1. As seen in this table, the parameter space is di-
vided into three regions according to equilibrium points
and their stabilities, as follows.

(i) When p >0, the system has only one kind of stable
focus, PL1 , which is N multiplicated as

,0,0),...,(0,0,0, ... ,O,ULI) .

f

centrations, is constant with i at an initial time. With
(2.22), we have thereby the following initial conditions:

(3.29)
(3.30)

0<x;<a,
yiza—Xx;,

fori=1,...,Nats=0. As stated previously, the initial
value of [E*];, or equivalently, that of x; [see (2.23)]
defines the intensity of signal transmission at the ith
synapse. If the initial values of x;’s satisfy
X, >x,> -+ >xy, we always obtained results like those
shown in Fig. 2. The results indicate that (i) when u <0,
P, the state point, is attracted to P,_l as s — o regardless

of the initial values of x;’s [Fig. 2(a)]; (ii) when u >0 and
v>1, P is attracted to either P, or PL] [Figs. 2(b) and

2(c)), i.e., the system has two kinds of thermal equilibri-

TABLE 1. Equilibrium points of the nonlinear dynamical system (2.20)—(2.22) and their stabilities. S

and U represent stable and unstable, respectively.

Equilibrium points

Stability

u>0 Py

(@)

a wng

u<0 v>1 P,

v<l1 Py

(ii)

.y Hhp)

. ,nM)

w CC wunwn

(iii)
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10 (@ 10 (b)

Xi Xj
0 0
0 50 0 50
S S
2 (c) 2 (d)
X; Xi
0 0 .
0 50 0 15
S S

FIG. 2. Time evolutions of x;’s for N =5. The parameter
values and the initial conditions are set for each figure, as fol-
lows: In (a) (a,B,7,8)=(2.0,1.5,1.0,1.0) and
(X1,X2,X3,X%4,%5)s=0=(1.0,0.9,0.8,0.7,0.6); in (b) and (c)
(a,B8,7,8)=(2.0,1.5,1.0,1.0), and (x,x3 X3,X4,X5)5=¢ i
(1.6,1.5, 1.4, 1.3, 1.2) and (0.9,0.8,0.7,0.6,0.5) in (d) and (c), re-
spectively; and in (d) (a,B,7,8)=(2.0,7.0,1.0,1.0), and
(%1,%3,X3,X4,X5)s=0=(1.6,1.5,1.4,1.3,1.2).
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um states; and (iii) when >0 and v <1, P is attracted to
P, regardless of the initial values of x;’s [Fig. 2(d)].

It is worthwhile to visualize the structure of trajec-
tories in the phase space. To demonstrate this, we have
chosen the simplest case N =2 and numerically calculat-
ed the orthogonal projections of trajectories onto the
x1x, plane. Since (3.29) and (3.30) for N =2 define a
two-dimensional regular square embedded in the four-
dimensional phase space and each point in this regular
square uniquely defines a trajectory starting from it, we
picked up various points covering the entire region of this
regular square as initial ends of trajectories. Results of
the calculations, which are presented in Fig. 3, are as fol-
lows.

(i) When u <0, the difference between x; and x, at
s =0, even if it is extremely small, is amplified with time,
and as a result, P,, the orthogonal projection of P onto
the x,x, plane, converges to (v,,0) [Fig. 3(a)).

(i) When u >0 and v> 1, if both x; and x, are small
enough at s =0 or if the difference between them is small
at s =0 even though x, and x, themselves are not so
small, then P,—(0,0) [Fig. 3(b)]. Otherwise,
P, —(vy ,0) [Fig. 3(b)]. Thus, there are thresholdlike

boundaries in the x,x, plane (Fig. 4), and therefore the
system functions as a switch: If P, starts from the shad-
ed region in Fig. 4, then the switch is turned OFF; other-
wise (the open region in Fig. 4), it is turned ON.

(iii) When u>0 and v <1, P| always converges to (0,0)
[Fig. 3(c)].

(@) s

X2

D
)

Il
4
)
4
y

FIG. 3. Orthogonal projec-
tions of trajectories onto the

x1x, plane for N=2. The pa-
rameter values and the initial
conditions are set for each
figure, as follows: In (a),

(b) s

X2

(4

(a,B,7,8)=(3.0,5.0,3.0,1.0); in
(b), (a,B,7,8)=(3.0,5.0,1.0,
1.0; and in (c), (a,B,7,8)
=(3.0,7.0,1.0,1.0). Various
points in the regular square
defined by (3.29) and (3.30) were
picked up as the initial ends of

X1

() s

trajectories so that they cover
the entire region of this regular
square. The final end of each
trajectory is (v,_],O) in (a) (le,O)

X2

or (0,0) in (b), and (0,0) in (c).
The value of v, is 4.70... and 4.0

in (a) and (b), respectively.

X1
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X2

X1

FIG. 4. Relation between (x,,x,); - and the final state of the
switch. The parameter values were set as the same as those for
Fig. 3(b). If (x;,x,) starts from the shaded region, then the
switch is turned OFF; if it starts from either of the open regions,
then the switch is turned ON.

Notice that the mathematical scheme (2.20)-(2.22) is
symmetric with respect to the change (x;,y;)<>(x;,y;)
with i and j being arbitrary integers satisfying 1 <i <N
and 1 <j<N. On the other hand, Table I indicates that
this symmetry can be spontaneously broken by the physi-
cally realized asymmetric state PLx’ in which one of the

x;’s is positive, whereas the others are zero. Figures 2(a)
and 2(b) further indicate that, among the x;’s, the one
that is the largest at an initial time converges to a positive
value, whereas the other decay to zero with time in as-
cending order of their initial values. As mentioned be-
fore, x; is a dimensionless variable that is proportional to
[E*]; [see (2.23)] and the weight of the ith synapse is a
monotonic increasing function of [E*];. Therefore,
spontaneous symmetry breaking in the above represents a
competitive interaction between the modification process-
es of the weights of synapses on a neuron, resulting in a
novel phenomenon which has been dubbed ‘‘synapse
selection”: The weight of one of the synapses, which is
the largest at an initial time, is selectively enhanced, and
those at the others are returned to their basal levels in as-
cending order of their initial strengths.

Our generalized scheme offers an additional improve-
ment: The original Lisman model is associated with a
difficulty of functional instability of the switch mecha-
nism [2]; this difficulty, however, is dramatically solved in
our generalized scheme, as below. We have shown for
N =2 that the system functions as a switch when the con-
dition (3.9) is satisfied [Figs. 3(b) and 4]; this result may
be generalized for N >2. We rewrite the condition (3.9)
here again in terms of @, 8, and y:

N[2B—ay —2VB(B—ay)] >1
> .
Y

B—ay >0 and

(3.31)

The condition under which the original Lisman model
functions as a switch is simply obtained by setting N =1
in (3.31), as

2B—ay —2VB(B—ay)

,}/2

A problem in the original Lisman model is the following:
The parameter range defined by (3.32) is relatively nar-

B—ay >0 and >1. (3.32)
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row, so that we must finely tune the parameter values so
as to make the system function as a switch. In other
words, the switch mechanism in the original Lisman
model is very delicate against small changes in biochemi-
cal or physiological conditions. Such a mechanism can-
not be accepted as a functionally realistic one. In con-
trast to this, the parameter range is extensively broaden
ed in our _ generalized scheme [note that
[2B—ay—2VB(B—ay)]/y*>0 when B—ay>0, and
see N in the left-hand side of the latter inequality in
(3.31)]. In fact, a lot of synapses are formed on
neuronal-cell membranes at high density, and therefore N
is supposed to be very large in a real neuron. For such a
large N, the switch mechanism is much more stabilized
compared to that for N =1.

Note that we have used the terms ON and OFF in more
generalized meanings compared to those used in the orig-
inal Lisman model. In our generalized scheme, the state
of the system is referred to as ON when one of the x;’s is
positive, whereas the others are zero, and it is referred to
as OFF when all of the x;’s are zero. Thus, there are N-
mulitplicated ON states, and the process of synapse selec-
tion determines which of the ON states will be realized.
For a help for understanding, the definitions of ON and
OFF in our generalized scheme and those in the original
Lisman model are illustrated in Table II. Thus, under
the condition (3.31), the system in the generalized scheme
functions not as a simple binary switch but as a hybri-
dized one, i.e., a switch with the function of synapse
selection.

In the analysis so far, we have postulated the following
idealized situation: Transmission of a signal at each
synapse takes place once, transiently, and simultaneously
with those at the others, and x; +y;, which corresponds
to the total of active- and inactive-enhancer concentra-
tions in the ith spine, is constant with i at the initial time.
That is, each synapse differs from the others only in the
initial value of x; (and thereby that of y; because
x;+y;=a), and the other conditions for all synapses are
equal at the initial time. This idealization has revealed
novel properties of the interaction between synapses in

TABLE II. Definitions of ON and OFF states in our model
and those in the original Lisman model. A solid or open circle
in each box represents the state of a corresponding synapse:
The ith circle is filled (@) if X =vL and it is opened (O) if

x; =0.
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model
@ 0000
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our model: The order in the initial values of x;’s is the
essential factor that determines the fate of each synapse.
However, the above restriction might be relieved for con-
siderations under more realistic situations. Therefore, we
supposed that transmission of a signal at each synapse
takes place repeatedly and asynchronously with those at
the others, and numerically investigated how x;’s evolve
with time. In this study, transmission of a signal at the
ith synapse was represented by the term z;y;, which is
added and subtracted from the right-hand sides of (2.20)
and (2.21), respectively. Here, z; is a function of s and
defines the intensity of the signal transmitted at the ith
synapse at time s; z; >0 if signal transmission at the ith
synapse is active, and z; =0 if it is at rest. Figure 5 shows
an example of results of numerical simulations for N =2.
The parameter values in this figure satisfy the condition
(3.9) under which, as shown in Figs. 3(b) and 4, the sys-
tem functions as a hybridized switch. At s=0,
x1=x,=0 and y;=y,=a. Just then, signal transmis-
sions become active at both synapse 1 and synapse 2 with
the different intensities such that z, >z, (P;). After the
termination of these signal transmissions, the difference
between x; and x, is amplified and then x; converged to
a positive value, whereas x, converges to zero; namely,
synapse 1 is selected. Then, this is followed by a series of
two signal transmissions at synapse 2. The intensity of
the former signal transmission (P, ) is insufficient to make
a new synapse selection, i.e., a selection of synapse 2.
The intensity of the latter (P;) is strong enough, so that
the weight of synapse 2 is enhanced, and, instead, that of
synapse 2 is reduced from the enhanced level to its basal
one. Interestingly, a further signal transmission at
synapse 1 (P,) reduces the weight of synapse 2 to its
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FIG. 5. Effects of signal transmissions at two neighboring
synapses, each becomes active repeatedly and asynchronously to
that at the other, on the synaptic-modification processes. The
parameter values are set as the same as those for Fig. 3(b), and
(x1,X%,3)5=0=1(0.0,0.0). The time courses of synaptic transmis-

sions are set as follows: (z4,z,)=(1.0,0.9) (0=<s<5);
(z4,2,)=(0.0,1.0) (50=<s<55); (z,,z,)=(0.0,10.0) (100<s
<105); (zy,2,)=(3.0,0.0) (150<s <155); otherwise,

(z,,2,)=(0.0,0.0). The arrows below the Figure indicate ac-
tivations of signal transmissions, and the heights of the left and
right bars below each arrow symbolize the intensities of signal
transmissions at synapses 1 and 2, respectively.
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basal level without enhancing that of synapse 1, namely
the switch is turned OFF.

IV. SUMMARY AND DISCUSSION

We have generalized the original Lisman model by tak-
ing solubilities of the enzymes into account, and dis-
cussed how synapses formed on the same neuron interact
with one another through cytosolic transportation of the
soluble enzyme between spines. Our model is described
by a nonlinear dynamical system, and results of analytical
and numerical investigations of this system have shown
that it can be multistable and exhibit spontaneous sym-
metry breaking. This instability represents a competitive
interaction between the modification processes at
synapses, leading to a novel phenomenon which we have
called “synapse selection”: The weight of only one of the
synapses, which is predominant at an initial time, is selec-
tively enhanced at a thermal equilibrium limit and those
at the others are returned to their basal levels in ascend-
ing order of their initial strengths. Moreover, a difficulty
associated with the original Lisman model, i.e., that the
parameter range in which the system functions as a
switch is relatively narrow and accordingly the switch
mechanism is functionally unstable against small changes
in parameters, has been considerably improved by exten-
sively broadening the parameter range. I this broadened
parameter range, the system functions not as a simple
binary switch but as a hybridized one, a switch with a
single OFF state and multiple ON states; which of the ON
states is realized is determined by the process of synapse
selection.

It has not yet been experimentally confirmed whether a
real neuron has a function such as synapse selection.
However, it is not absurd to suppose that a real neuron
has such a function, because synapse selection seems to
be useful for feature grasping of a pattern. Consider a
pattern consisting of several stimuli and let the index of
the strongest stimulus and its intensity be the features of
this pattern. A neuron that performs synapse selection
can extract the features of a given pattern and store
them.

As shown in Fig. 5, a memory stored in the system is
alterable. At the first stage in Fig. 5, the system stores
the features of the first pattern (P, in Fig. 5). Next, the
system then receives the second pattern (P, ), but it still
retains the old memory because the features of the second
pattern are not so prominent. However, those of the
third one (P;) are so prominent that the system forgets
the old memory and newly stores the features of the third
pattern.

The analyses of our model have been performed under
the steady-state assumptions for intermediary metabol-
ites, (2.11) and (2.12). However, the mathematical
scheme that “exactly” describes our model is given not
by the equations that we have dealt with but by
(2.4)-(2.10). Hence, there arises a question: Are the nov-
el properties obtained in our analyses, such as synapse
selection, or hybrid switching, essential features of our
model, or merely side effects of the steady-state assump-
tions? Indeed, equilibrium points of the system in the ex-
act scheme are the same as those of that in the simplified
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scheme, but it is not so easy to determine their stabilities
in an analytical way because the exact scheme contains so
many independent variables and parameters. Therefore,
we investigated the dynamical structure of the exact
scheme by numerically calculating its time evolution for
various sets of parameter values and initial conditions for
variables. Results of the investigation indicate that the
classification of the structures of the simplified scheme,
discussed in detail in Sec. III, is almost valid also in the
exact scheme (data not shown), suggesting that the essen-
tial features of the model are not spoiled by the steady-
state assumptions for intermediary metabolites.

In this paper we have postulated that the enhancer in
the inactive form is soluble, whereas the enhancer and
the inactivator in the other forms are membrane associat-
ed. However, there are several other possibilities.
Indeed, very little is known about enzymes responsible
for synaptic enhancement, including their names, their
solubilities, etc.; thus, we have nowadays no experimental
evidence to exclude these other possibilities that we have
not entered in the present study. Some of them, however,
can be ruled out by the following speculations: First, it is
natural to suppose that E*E is membrane associated if
E* or E is membrane associated; otherwise, it is soluble.
IE* is membrane associated if I or E* is membrane asso-
ciated; otherwise, it is soluble. Second, E* is supposed to
be insoluble from the following consideration: If it is
soluble, flow flux for E*,

D, V(E*],~[E*]))
J * = y
E; Sd

will tend to vanish as t — o, giving
(E*L,=[E*],="" =[E*]y

at a thermal equilibrium limit. In this limit, the weight of
each synapse is equal to those of the others; in other
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words, each synapse completely loses its use-dependent
specificity. Therefore, if learning and memory processes
in the real brain are performed by use-dependent specific
changes in synaptic weights, it is unlikely that E* is solu-
ble. Third, if E, E*, and I are all membrane associated,
there is no enzyme transportation between spines, result-
ing in no interactions between synapses. Such a scheme
is nothing but the original one discussed by Lisman. On
the basis of these speculations, two possible cases still
remain to be examined: (1) E and I are soluble, whereas
E* is membrane associated, and (2) I is soluble, whereas
E and E* are membrane associated. Studies for these
cases are now in progress and results of them will be re-
ported in forthcoming papers.

In the present study the model has been discussed
without specifying the names of the enzymes. In fact, lit-
tle is experimentally established about enzymes responsi-
ble for synaptic modification. However, physiological
and biochemical studies on long-term synaptic potentia-
tion (LTP) in rat hippocampus [3], an experimental mod-
el for learning and memory in mammalian brains, suggest
that the activities of protein kinases contribute to synap-
tic enhancement. Protein kinases are enzymes that ca-
talyze phosphorylations of substrate proteins, and among
them, Ca’"/phospholipid-dependent protein kinase
(PKC) is considered to play an important role in LTP. It
may be worthwhile to mention that PKC shows similar
biochemical properties to those postulated for the
enhancer in the present study; inactive PKC is soluble in
cytosol, whereas it translocates to membrane and be-
comes active associating to LTP [9].

The present study proposes a pattern-encoding rule
based on synapse selection, strongly suggesting that
molecular and cellular levels of consideration must be in-
cluded for exploration of network levels of information
processing in the brain. It will be an interesting work to
investigate the performance of neural networks that obey
such a pattern-encoding rule.
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FIG. 4. Relation between (x,x,), - and the final state of the
switch. The parameter values were set as the same as those for
Fig. 3(b). If (x,,x,) starts from the shaded region, then the
switch is turned OFF; if it starts from either of the open regions,
then the switch is turned ON.



